Home Example of Fourier series of a symmetrical bipolar square pulse train
Post
Cancel

Example of Fourier series of a symmetrical bipolar square pulse train

This example can be developed on the blackboard for 20 to 30 minutes, if followed by a previous exmample.

Example: Fourier series of a symmetrical bipolar square pulse train

Problem Statement

Develop the Fourier series of the signal $g(t)$

Graphical representation of the signal $g(t)$

Approach

Periodic Alternating Function

The function is periodic; the value alternates between 1 and -1.

Choice of Period

The function resembles a sine wave centered at 0. The period starts at 1 and ends at -1. We choose the period from $-T/2$ to $T/2$, which is centered at the origin. This will facilitate the integration of the function within this period.

Generating Function

It consists of two pulses, each with a width of $T/2$ and offset, one at $-T/4$ and the other at $T/4$: \begin{equation} g(t)=-\pi \left(\frac{t+\frac{T}{4}}{\frac{T}{2}} \right) + \pi \left( \frac{t-\frac{T}{4}}{\frac{T}{2}} \right) \end{equation}

Solution

Coefficients $d_n$

To obtain a Fourier series, the coefficients $d_n$ must first be calculated: \begin{equation} d_n=\frac{1}{T} \int_{-\infty}^{\infty} f(t) e^{-j 2\pi n f_0 t} d t \end{equation}

Periodic Function

We integrate the generating function over one period, choosing a period $T$ centered at the origin: \begin{equation} d_n=\frac{1}{T} \int_{-T/2}^{0} -\pi \left(\frac{t+\frac{T}{4}}{\frac{T}{2}} \right) e^{-j 2\pi n f_0 t} d t + \frac{1}{T} \int_{0}^{T/2} \pi \left( \frac{t-\frac{T}{4}}{\frac{T}{2}} \right) e^{-j 2\pi n f_0 t} d t \end{equation}

Simplify the Integration Limits

The periodic function is 1, 0, or -1; we integrate over the limits where it is 1 or -1: \begin{equation} d_n=\frac{-1}{T} \int_{-T/2}^{0} e^{-j 2\pi n f_0 t} d t + \frac{1}{T} \int_{0}^{T/2} e^{-j 2\pi n f_0 t} d t \end{equation}

Integrate

\begin{equation} d_n = \frac{-1}{T} \frac {-1}{j 2 \pi n f_0} \left[ e^{-j 2 \pi n f_0 t}\right]_{-T/2}^0 + \frac{1}{T} \frac {-1}{j 2 \pi n f_0} \left[ e^{-j 2 \pi n f_0 t}\right]_0^{T/2} \end{equation}

\begin{equation} d_n= \frac{1}{j 2 \pi n f_0 T} \left( \left[ e^{-j 2 \pi n f_0 t}\right] _{-T/2}^0 - \left[ e^{-j 2 \pi n f_0 t}\right] _0^{T/2} \right) \end{equation}

\begin{equation} d_n= \frac{1}{j 2 \pi n \cancel{f_0 T}} \left( 1 - e^{j \cancel{2} \pi n \cancel{f_0} \frac {\cancel{T}}{\cancel{2}}} - e^{-j \cancel{2} \pi n \cancel{f_0} \frac{\cancel{T}}{\cancel{2}}} +1 \right) \end{equation} \begin{equation} d_n= \frac{1}{j 2 \pi n } \left( - e^{j \pi n } - e^{-j \pi n } +2 \right) \end{equation} \begin{equation} d_na = \frac{1}{j \pi n } \left(-\frac { e^{j \pi n } + e^{-j \pi n }}{2} +1 \right) \end{equation} \begin{equation} d_n= \frac{1}{j \pi n } \left(-\cos \left( \pi n \right) +1 \right) \end{equation}

Sine

Using the trigonometric identity, we get the expression in sine form: \begin{equation} d_n = \frac{2}{j \pi n } \left(\frac{1}{2}-\frac{1}{2}\cos \left( \pi n \right) \right)= \frac{2}{j \pi n } \sin^2\left( \frac{\pi n}{2}\right)
\end{equation}

Sinc Function

Expressed in terms of the sinc function: \begin{equation} d_n = \frac{\pi n}{j 2} \frac{\sin^2\left( \frac{\pi n}{2}\right)}{\left(\frac{\pi n}{2}\right)^2}= \frac{\pi n}{j 2} sinc^2\left( \frac{\pi n}{2} \right) = \frac{\pi n}{j 2} sinc_n^2\left( \frac{n}{2} \right) \end{equation}

Graphic representation of the coefficients $d_n$

Fourier Series

Substituting into the Fourier transform expression:

\begin{align} f(t) &= \sum_{n=-\infty}^\infty d_n e^{j 2 \pi n f_0 n t} = \sum_{n=-\infty}^\infty \frac{\pi n}{j 2} sinc_n^2\left( \frac{n}{2} \right) e^{j 2 \pi n f_0 n t}
&= \frac{\pi}{j 2} \sum_{n=-\infty}^\infty n sinc_n^2\left( \frac{n}{2} \right) \left[\cos\left( 2 \pi n f_0 t \right)+j\sin\left( 2 \pi n f_0 t \right) \right] \ &= \frac{\pi}{j 2} \left[\sum_{n=-\infty}^\infty n sinc_n^2\left( \frac{n}{2} \right)\cos\left( 2 \pi n f_0 t \right)+ \sum_{n=-\infty}^\infty n sinc_n^2\left( \frac{n}{2} \right) j\sin\left( 2 \pi n f_0 t \right) \right] \end{align}

Summation and Integral

The summation operation for a discrete function is equivalent to the integration operation for a continuous function; the properties of even and odd functions in integration are the same as in summation.

Odd Function

The product of the functions $n$ (odd), $sinc^2(\frac{n}{2})$ (even), and $\cos(2 \pi n f_0 t)$ (even) is odd. Therefore, the summation over $\mathbb{N}$ is $0$. \begin{equation} f(t)= \frac{\pi}{\cancel{j} 2} \sum_{n=-\infty}^\infty n sinc_n^2\left( \frac{n}{2} \right) \cancel{j}\sin\left( 2 \pi n f_0 t \right) \end{equation}

Even Function

The product of the functions $n$ (odd), $sinc^2(\frac{n}{2})$ (even), and $\sin(2 \pi n f_0 t)$ (odd) is even. Therefore, the summation can be rewritten as: \begin{equation} f(t)= \frac{\cancel{2} \pi}{ \cancel{2}} \sum_{n=0}^\infty n sinc_n^2\left( \frac{n}{2} \right) \sin\left( 2 \pi n f_0 t \right) = \pi\sum_{n=1}^\infty n sinc_n^2\left( \frac{n}{2} \right) \sin\left( 2 \pi n f_0 t \right) \end{equation}

Series Values

We tabulate some values of the series:

$n$$n \pi sinc_n^2 \left( \frac{n}{2} \right)$$\sin\left( 2 \pi n f_0 t \right)$
010
1$\frac{4}{\pi}$$\sin(2 \pi f_0 t)$
20$\sin(4 \pi f_0 t)$
3$\frac{4}{3 \pi}$$\sin(6 \pi f_0 t)$
40$\sin(8 \pi f_0 t)$
5$\frac{4}{5 \pi}$$\sin(10 \pi f_0 t)$
60$\sin(12 \pi f_0 t)$
7$\frac{4}{7 \pi}$$\sin(14 \pi f_0 t)$

Summation

It can also be written in a more compact form:

\begin{equation} f(t) = \frac{4}{\pi} \sum_1^{\infty} \frac{1}{2n-1}\sin \left(2 (2n-1) \pi f_0 t \right) \end{equation}

Graphical Representation

When we superimpose the original signal on the terms of the obtained series, we see that the series increasingly resembles the signal as more terms are added. Graphic representation of the cosine of the fundamental frequency, the summation of the first two terms of the series, the summation of the first four terms of the series, and the summation of the first hundred terms of the series, respectively. As we add terms to the series, it increasingly resembles the original signal.

Conclussions

Parity of a function

The signal in the previous example (pair) was built upon a Fourier Series made up of fundamental cosinus functions. This (odd), besides similary, is build up by fundamental sinus functions.

Mean value of a function

In contrast to the previous example where the signal was not centered at zero, resulting in a non-zero first frequency component (which was the average amplitude of the signal), the current signal is centered at zero. Consequently, the first frequency component is zero. This centering of the signal simplifies the analysis and ensures that the DC component is null, emphasizing the symmetrical nature of the signal around the origin. Additionally, the Fourier series representation highlights the importance of symmetry in simplifying the frequency domain analysis, demonstrating that signals centered at zero tend to have more straightforward Fourier series with zero DC components. This property is particularly useful in applications where the elimination of the DC offset is desirable for signal processing tasks.

This post is licensed under CC BY 4.0 by the author.

Example of Fourier series of a symmetrical square pulse train

Example of Fourier series of an asymmetrical square pulse train